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Abstract. Linear and non-linear MHD computations are used to investigate reversed field pinch

configurations with magnetic fluctuations reduced through current profile control. Simulations with

reduced ohmic drive and moderate auxiliary current drive, represented generically with an electron

force term, applied locally in radius near the plasma edge show magnetic fluctuation energies that are

orders of magnitude smaller than those in simulations without profile control. The core of the improved

configurations has reduced magnetic shear and closed flux surfaces in some cases, and reversal is

sustained through the auxiliary current drive. Modes resonant near the edge may become unstable with

auxiliary drive, but their saturation levels can be controlled. The space of auxiliary drive parameters

is explored, and the ill effects of deviating far from optimal conditions is demonstrated in non-linear

simulations.

1. Introduction

The main impediment to better confinement in
laboratory reversed field pinch RFP [1] experiments
has been transport believed to be driven by the
stochasticity of the magnetic field. Experimental
studies [2–7] have provided strong evidence for the
link between transport and magnetic field fluctua-
tions, and computational studies [8–12] have pro-
vided substantial insight into the cause of the fluc-
tuations. An ohmically driven pinch tends to a state
with strong shear in the magnetic field and peaked
plasma current. The toroidal magnetic field decreases
monotonically with minor radius, passing through
zero and reversing its direction in the plasma edge.
Hence, the total magnetic field is toroidal on-axis and
mostly poloidal at the edge. The applied electric field
is toroidal, so the component of electric field that is
parallel to the magnetic field is strong on-axis and
weak at the plasma edge. The resulting current den-
sity profile has a gradient that, in a plasma with
safety factor q below 1, drives resistive MHD insta-
bilities. Saturation results from non-linear coupling
to resonant stable fluctuations, leading to magnetic
field stochasticity, and from quasi-linear modifica-
tions to the current density profile.

The spectrum of the saturated non-linear state is
dominated by poloidal mode number m = 1 fluctua-

tions that are resonant at small radii and are driven
linearly. They excite two non-linear cascades:

(a) Coupling to robustly stable m > 1 fluctuations,
(b) Coupling through m = 0 activity to m = 1 fluc-

tuations that are resonant at large radii near the
reversal surface (where q = 0) [10].

Quasi-linear feedback via the fluctuation induced
electric field, Ef = −〈v × b〉, where lower case
indicates a perturbed quantity and 〈 〉 is an aver-
age over the poloidal and toroidal directions, sup-
presses mean current near the magnetic axis and
enhances mean current near the reversal surface [11].
The sustainment of poloidal current beyond para-
magnetic effects, and hence of reversed toroidal field
near the wall, constitutes the ‘MHD dynamo’. Recent
numerical work shows that the non-linear activity
becomes increasing intermittent and that the fluctu-
ation level decreases weakly as the Lundquist number
is increased [12]. The weak scaling compels us to look
for means to enhance confinement over the ohmically
driven RFP configuration.

The above description suggests that magnetic
fluctuations and associated transport can be dimin-
ished by reducing the free energy source of the cur-
rent density gradient. Applying auxiliary current
drive at large radii and reducing the ohmic drive
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can replicate and enhance the stabilizing effects of
the quasi-linear feedback. Earlier MHD studies of
current profile alteration with direct current helic-
ity injection have demonstrated substantial reduc-
tion of magnetic fluctuations [13], and RF current
drive has been suggested as an alternative means of
auxiliary current drive [14–16]. Initial, rather coarse
experimental attempts at current profile flattening
by inductive means have proven extremely encourag-
ing, decreasing the magnetic fluctuations by a factor
of 2 and increasing energy confinement by a factor
of 5 [17, 18].

In this article, we use linear eigenvalue computa-
tions and non-linear three dimensional simulations
to examine the effects of current profile alteration
on RFPs in the context of zero beta resistive MHD.
This work reveals how different current density pro-
file alterations either reduce or enhance the magnetic
fluctuation level. The MHD equations typically used
to describe RFP dynamics are augmented by auxil-
iary current drive terms which arise from an extra
force in the electron equation of motion. We are not
interested in treating the method of current drive, for
example, RF or any other specific technique, but only
the effect of current drive on MHD properties. Com-
putation of energy transport changes with altered
current profiles is beyond the scope of this article, but
improved confinement can be expected for conditions
demonstrating reduced magnetic fluctuation levels.

The linear calculations guide the useful placement
of auxiliary current in non-linear simulations. The
effects of the auxiliary current drive are incorporated
into the equilibria studied linearly, where the impor-
tant parameters are the auxiliary drive magnitude,
radial location and width, and ohmic electric field.
The stability of the set of modes which dominate
typical RFP wavenumber spectra and non-linearly
excite other fluctuations is used as a measure of suc-
cess as the parameters are varied. We find ample
regions where all the modes in the selected set are
stable, indicating that high precision is not required
from an auxiliary current drive system. The opti-
mum profiles have a shallow parallel current gradient
in the core resulting from a reduced inductive drive,
and they have reversed field sustained by auxiliary
drive applied near the plasma edge.

The non-linear simulations provide the saturated
fluctuation amplitudes and indicate that profile con-
trol can reduce the energy in magnetic perturbations
by 2 orders of magnitude or more. The amplitude of
a particular mode is greatly reduced when it is pre-
dicted to be linearly stable and when modes resonant

at smaller radii are also stable. When all modes reso-
nant within some radius are stabilized, they will have
small but non-zero saturation amplitudes, since non-
linear coupling with any remaining unstable modes
keeps them from vanishing. In some cases, this allows
the formation of closed flux surfaces in the plasma
interior. In other cases where the magnetic field
remains stochastic, confinement should still be sub-
stantially improved, since the effective thermal dif-
fusivity is proportional to 〈b̃2r〉, the mean square of
the radial component of the perturbed magnetic field
[19–21]. For modes resonant near the plasma edge,
the auxiliary drive can be destabilizing. In optimal
conditions, these instabilities are weak, and the sat-
urated amplitudes are smaller than those in typical
RFP simulations due to the changes in non-linear
couplings.

Current profile modification has been extensively
investigated in tokamaks for achieving increased con-
finement and plasma beta. Improved performance
has been demonstrated in tokamak experiments by
using inductive effects [22–26], aided by neutral beam
heating in some cases, and by using off-axis RF cur-
rent drive [27, 28] to create high inductance and
negative central shear profiles. While the intent of
current profile control in RFPs is similar, confine-
ment improvement is expected from reduced levels of
global electromagnetic activity; not from suppressing
localized electrostatic fluctuations as in tokamaks. In
this respect, theoretical work on using current drive
to stabilize linear tearing modes [29] and to sup-
press magnetic islands [30, 31] is more closely related
to the topic considered here. However, the proxim-
ity of low order rational surfaces in RFPs precludes
treating individual modes in isolation.

The remaining sections of this article are orga-
nized as follows: In Section 2 we describe the equa-
tions and numerical algorithms used in this study.
The results of linear calculations are presented in
Section 3, and the non-linear simulations are dis-
cussed in Section 4. Finally, Section 5 contains a dis-
cussion of our results and conclusions drawn from
them.

2. Equations and
numerical algorithms

The current gradient is the dominant source of
free energy for sustaining magnetic fluctuations in
present RFPs, so the pressureless limit of the MHD
equations is relevant for exploring the effects of
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current profile control. This set of equations includes
a combined Ohm’s–Faraday’s equation and the cen-
tre of mass velocity equation. The important dimen-
sionless parameters are the Lundquist number and
the magnetic Prandtl number. These quantities are
readily accessible when the equations are written in
the dimensionless form,
∂B

∂t
= −∇×E = ∇× (SV ×B − ηJ +Ea) (1)

∂V

∂t
= −SV · ∇V + SJ ×B + ν∇2V + F a (2)

where lengths are normalized by the minor radius
a, magnetic induction by an approximate magnitude
at r = 0, B0, time by the resistive diffusion time
τr = 4πa2/c2η0 and velocity by the Alfvén speed,
va = B0/(4πρ)1/2. The mass density ρ is assumed to
be fixed and uniform, and η in Eq. (1) is a dimension-
less shape factor for electrical diffusivity. The impor-
tant dimensionless parameters are then S = τr/τa
(Lundquist number, where τa = a/va) and ν (mag-
netic Prandtl number). For the simulations discussed
later, we note that the electric field is normalized by
cη0B0/4πa.

All computations use the straight, periodic cylin-
der approximation for the toroidal geometry of
experiments. This is a common approximation for
RFPs, since q < 1 across the entire radius, i.e. there
are no regions of stabilizing magnetic curvature [32].

Equations (1) and (2) contain the source terms
Ea and F a, which represent auxiliary current drive.
They may be considered body forces on the elec-
trons (from RF current drive after averaging over
the wave period, for example), in which case Ea =
−F a/(Ωiτa) relates the normalized fields, where Ωi
is the ion cyclotron frequency. The source is directed
parallel to 〈B〉, to control the λ ≡ 〈J〉 · 〈B〉/〈B〉2 or
‘parallel current’ profile. The effect on the momen-
tum density is small, and in some cases we have
dropped the source term from (2) while retaining it
in (1). The shape of these source terms is param-
eterized with three quantities, Ea, σa and ra for a
Gaussian distribution in radius,

Ea(r) = Ea exp

[
−
(
r − ra
σa

)2
]
. (3)

This distribution allows a systematic approach for
varying the magnitude, location and width of the
auxiliary current drive. It also approximates the cur-
rent drive profile expected from ray tracing compu-
tations of lower hybrid waves [15, 16].

The following subsections describe numerical
details for the linear and non-linear computations.

2.1. Linear calculations

To evaluate linear stability with respect to the
current gradient, we employ asymptotic matching
theory [33, 34] in pressureless conditions. Following
standard procedure, we find eigenfunctions from the
linear force-free condition, 〈J〉×b+ j×〈B〉 = 0, with
an ideal electric field in Faraday’s law for the ‘outer’
regions. (Lower case indicates a perturbed quantity.)
We also assume that 〈V 〉 ∼= 0. These conditions can
be reduced to a scalar relation for the perturbed
quantity ψ ≡ r3/2br/(m2 + k2r2)1/2 associated with
a single Fourier component [35],

d2ψ

dr2
= ψ

(
m2 + k2r2

r2
− m4 + 10m2k2r2 − 3k4r4)

4r2(m2 + k2r2)2

− λ2 +
dλ

dr

(m〈Bz〉 − kr〈Bθ〉)
m〈Bθ〉+ kr〈Bz〉

− 2λmk
m2 + k2r2

)
(4)

where ψ(r, θ, z) → ψ(r)ei(mθ+kz) + c.c., and c.c.
denotes the complex conjugate of the previous term.

To determine the eigenfunction for a particu-
lar mode and a given equilibrium field, we numer-
ically integrate Eq. (4) in the direction of increas-
ing r across the distinct regions bounded by the
axis, the wall and/or the resonance surfaces for the
mode (where q = −m/kR, and R is the cylinder
length divided by 2π). To find a sufficient number
of linearly independent solutions, one integration is
started from the left hand side of each region. At the
axis, initial conditions for the integration are deter-
mined by regularity conditions, and at the resonance
surfaces, it is convenient to start with a value of zero
and unit slope. With the exception of the last region,
integrations are extended across one resonance sur-
face using Robinson’s comparison equation [35]. This
provides two linearly independent solutions (one new
and one extended) in all but the first region.

When there is only one resonance surface
for a mode, we label the solution starting from
the axis ψ0 and label the solution starting from
the resonance surface ψi (Fig. 1). The general
solution between the resonance surface and the
wall, ψ(r) = ψ0(r) + Cψi(r), satisfies the ‘con-
stant ψ’ approximation [33] as ψi = 0 at the
resonance surface (r = rs). A particular solu-
tion satisfies the boundary condition at the wall
when C = −ψ0(1)/ψi(1). The eigenvalue is then
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Figure 1. Solutions of Eq. (4) used to construct eigenfunctions for the para-

magnetic equilibrium with Ez = 3.95 and Bz(0) = 1. The four plots show

solutions for the (azimuthal, axial) Fourier components indicated, and the

vertical lines mark the locations of the resonance surfaces. The (1,−5) mode

does not have a resonance, and though close to marginal, ψ0(1) > 0, so it is

ideally stable. The (1,−6) mode is ideally unstable, since ψi(1) < 0. (In the

second region, ψ0 is not plotted for clarity.) For the (1,−7) mode, ψi(1) > 0 and

ψ0(1) < 0, so it is ideally stable (close to marginal) and resistively unstable.

The (1,−22) mode is stable.

∆′ ≡ lim
ε→0

dψ

dr

∣∣∣∣
rs+ε

− dψ

dr

∣∣∣∣
rs−ε

ψ|rs

=
C

ψ0(rs)
= − ψ0(1)

ψi(1)ψ0(rs)
(5)

since ψ0 does not contribute to the slope discontinu-
ity at rs,1 and ψi has unit slope just beyond rs. The
mode is unstable if ∆′ > 0, and a growth rate may
be determined through a simple relation from the
inner layer equations [33, 34]. Note that within the
first region for each integration, the result is equiva-
lent to Newcomb’s ‘small’ solution [36, 37]. Thus, if
it changes sign before crossing the first region, the

1 The extended solution contains the logarithmic disconti-
nuity, which is removed from the numerical integration by the
comparison equation [35].

configuration is ideally unstable and resistive stabil-
ity is not computed. Figures 1(a)–(d) show exam-
ples of solutions for two ideally unstable modes, one
resistively unstable mode, and one mode that is both
ideally and resistively stable.

In our parameter studies, we have also encoun-
tered modes with two resonance surfaces, but none
with three or more, and the resistive stability deter-
mination is a little more complicated for these cases.
Here we apply the double tearing theory of Dewar
and Persson [38]. Our computed outer region solu-
tions are used to construct the ψ̃1− and ψ̃2− func-
tions discussed in Section VII of Ref. [38], and
stability is determined without Doppler shifts.

We have verified that our linear calculations repro-
duce published marginal stability results for ideal
and resistive modes in the paramagnetic equilibrium
model [35] and in the ‘Bessel function model’ [39].
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The paramagnetic equilibrium [40] is particularly
important, since it represents what would result if
MHD fluctuations had no effect on the electric field
in the resistive MHD Ohm’s law. The parallel current
profile for zero beta conditions is

λ(r) =
Ez〈Bz(r)〉
η(r)〈B(r)〉2 . (6)

The uniform axial electric field sustains current along
the magnetic field against the effects of resistive
dissipation.

2.2. Non-linear simulations

To solve Eqs (1) and (2) including quasi-linear
and non-linear effects, we have used the three dimen-
sional simulation code, DEBS [41]. It applies the
‘leapfrog’ method, with velocity staggered in time
from the vector potential, to advance the solution
in discrete time steps from a given set of initial
conditions. The dissipative terms in (1) and (2)
are treated implicitly, while all non-linear advective
terms employ a predictor–corrector method. In addi-
tion, a semi-implicit operator is used in Eq. (2) to
avoid time step restrictions that would otherwise
arise if the ideal MHD terms were handled explicitly
[41]. The spatial representation is pseudo-spectral for
the two periodic co-ordinates: differential operators
are treated in the Fourier representation, while non-
linear products are computed in configuration space.
An efficient fast Fourier transform (FFT) routine is
used to transform from one representation to the
other. In the radial direction, a discrete representa-
tion is used, and radial derivatives are approximated
by finite differences on a suitably staggered grid.

The normalized resistivity in Eq. (1) is considered
a function of radius only. It has the form

η(r) = (1 + c1r
c2)c3 (7)

and the simulations discussed in Section 4 have the
constants set to (c1 = 9, c2 = 30, c3 = 2). This gener-
ates a profile that is uniform across most of the radial
domain to isolate the MHD activity from resistivity
gradient effects, as in Refs [8–13]. However, η rises
sharply near the wall to approximate the suppression
of current due to impurities and cold hydrogen. The
isotropic viscosity in Eq. (2) is not intended as an
accurate model for the anisotropic physical viscosity,
but it is important for the numerical algorithm. We
have used ν = 1 in the simulations, and the resulting
dissipation is typically small in comparison with the
resistive dissipation associated with current density
fluctuations.

For non-linear simulations, there are practical lim-
itations on S and on the number of Fourier compo-
nents that can be included. As S is increased, radial
scale lengths decrease, requiring more computational
mesh points. We have found that 125 mesh points
provide good resolution for S = 104 simulations, and
this level of refinement does not require an excessive
amount of computer time. Although this value of S is
about 2 orders of magnitude below present day RFP
experiments, resistive tearing and the dominant non-
linear couplings are not impeded by dissipation. The
number of Fourier components included in a simula-
tion also affects the computation time. We typically
use 0 ≤ m ≤ 2 and −42 ≤ n ≤ 42 (n = kR), which
is sufficient resolution for cases with R/a = 3.

All non-linear simulations are started from an
unstable paramagnetic equilibrium with small per-
turbations in the vector potential. There is a brief
period of linear growth followed by quasi-linear and
non-linear saturation. Non-linear interactions pre-
clude a true steady state, but transients are small
as modes exchange energy. (See Ref. [11] for a
detailed description of the MHD activity in RFP sim-
ulations.) After saturation, we apply an increasing
amount of auxiliary drive over a period of approx-
imately 0.1τr to gradually change the parallel cur-
rent profile. The auxiliary drive is then held steady
to give the fluctuations time to adjust to the new
conditions. Reported results are averaged for at least
0.15τr (many times the minor radius divided by the
tearing growth rate) after the transients have settled
out, since some degree of temporal fluctuation often
remains.

3. Linear calculations

Here we ask what auxiliary current profiles stabi-
lize the tearing modes resonant in the plasma core,
with the expectation that any remaining fluctuations
do not appreciably influence the magnetic configura-
tion. The equilibria we examine satisfy the mean field
Ohm’s law, including the effect of the auxiliary cur-
rent drive. The parallel current profile is described
by

λ(r) =
〈Ez〉〈Bz(r)〉
η(r)〈B(r)〉2 +

〈Ea(r)〉
η(r)〈B(r)〉 (8)

which is similar to Eq. (6); however, equilibria sat-
isfying Eq. (8) may exhibit field reversal.2 For a

2 Since the auxiliary drive term represents an average
of non-symmetric perturbations or effects not considered by
MHD, Cowling’s theorem [42] is not applicable.
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Figure 2. Comparisons of (a) parallel current profiles

and (b) ψ0 solutions for the (1,−7) mode of Fig. 1 with

and without auxiliary current applied at r = 0.6. The

resonance surface does not move in this case, and its

location is shown as the vertical line in (b). The mode

is stabilized by the auxiliary drive, since ψ0 changes sign

at the wall and ψi remains positive. Large distortions of

the parallel current profile, such as the region of λ < 0 in

this example, can be avoided; see Section 4.2.

given resistivity profile and axial flux Φ, the equi-
librium is completely determined by the axial elec-
tric field and auxiliary current drive profile. The
equilibria we study are realistic in that the corre-
sponding auxiliary drive profiles are local in radius
with the simple Gaussian shape of Eq. (3), consis-
tent with expectations for an RF current drive sys-
tem [15, 16], for example. Previous linear studies
found equilibria stable to all current gradient driven
modes [35, 43]. Though interesting, these equilib-
ria may require global auxiliary drive to satisfy (8)
with realistic resistivity profiles, which would be
impractical for an experiment.

The localized auxiliary drive stabilizes a current
gradient driven mode by flattening the λ profile in
the region where the mode is sensitive to dλ/dr. For

resonant modes, the region of greatest sensitivity is
near the resonant surface. As an example, consider
the ψ solutions for the m = 1, n = −7 mode in Fig. 1,
which indicates ∆′ > 0 according to Eq. (5). When
auxiliary drive is applied at r = 0.6, the λ profile is
flattened near the resonant surface, and the mode is
stabilized (Fig. 2). The region where the λ gradient is
negative still bends the solution towards 0. However,
the bend is closer to the wall, and the denominator of
the destabilizing term (the fourth term in Eq. (4)) is
larger, so the mode is less sensitive to the displaced
gradient.

An important result from the parameter study
concerns the treatment of the axial electric field.
With auxiliary drive at a fixed location, an adjust-
ment of Ez can relocate a mode resonant surface
to improve stability. If the resonant surface is at a
radius which is too small to benefit from the auxil-
iary drive, decreasing Ez (with Φ fixed) increases the
monotonically decreasing safety factor and moves the
resonance outward. Conversely, an increase of Ez can
improve stability for a mode resonant at too large a
radius. We therefore consider a range of Ez in addi-
tion to a range of Ea for each auxiliary current posi-
tion and width. With ra = 0.7 and σa = 0.15, the
stable regions for m = 1, −8 ≤ n ≤ −5 are displayed
in Fig. 3. The n = −5 mode is not resonant in the
upper left hand part of the investigated parameter
space, but the other modes display a band of stabil-
ity. Within a band, there is favourable alignment for
the mode resonant surface and the auxiliary drive.
Fortunately, the stable regions for individual modes
overlap, so it is possible to find configurations where
many are stable.

To assess the significance of ra, σa and the resistiv-
ity profile, we determine the boundary of the stable
region in Ea–Ez space for all modes in a set, while
varying the auxiliary drive and resistivity shaping
parameters. We choose to consider the set m = 1,
−9 ≤ n ≤ −3, which includes the m = 1 modes
that are normally resonant in the plasma core for
R/a = 3. The stability diagram shown by Fig. 4
shows that as ra is increased from 0.65 to 0.8, the
stable region for the set drops to smaller values of
Ez. Decreasing Ez maintains alignment between the
flattened region of λ and the resonance surfaces of
the modes in the set, as the auxiliary drive is moved
outwards.

When the width of the auxiliary drive is increased,
two effects are observed. First, the stable region
is wider (Fig. 5). The auxiliary drive increases the
parallel current over a larger fraction of the minor
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Figure 3. Regions of stability in the auxiliary drive/axial drive parameter

space for the modes with the indicated (m,n) Fourier components. The auxil-

iary drive location and width are ra = 0.7 and σa = 0.15, respectively, and the

axial flux is Φ = 0.67. The resistivity profile is η(r) = (1+9r30)2. The axes are

in the normalized electric field units of Eq. (1), where E = 4πaEcgs/cη0B0.

radius, so the matching of Ea and Ez values to pro-
vide stability is less sensitive. Second, the open end
of the stable region is tilted to larger values of Ez
as σa is increased. With the net axial flux held fixed,
increasing σa increases parallel current and magnetic
shear in the vicinity of ra. For r < ra, the safety fac-
tor increases, while for r > ra, it decreases. Increas-
ing Ez tends to offset the change in q within ra,
which maintains the alignment between ra and the
resonant surfaces. While a lack of extreme sensitiv-
ity is expected to be important in experiments, large
amounts of inductive electric field are not desirable.
This can be avoided by choosing parameters near the
tip of the stable region.

We have also examined the influence of the resis-
tivity profile. When the resistivity profile is broad
(large values of c2 in the resistivity shape function,
Eq. (7)), the stable region lies at relatively small val-
ues of Ea as shown in Fig. 6. This is attributed to the

relatively small resistivity local to ra, where inducing
the same current density requires less driving force.
The stable region also extends to smaller values of
Ez. Less axial drive is needed to obtain the current,
and hence shear, required to place all the resonance
surfaces of modes in the set within ra. Of greatest
importance is that the stable region remains broad as
the resistivity profile is changed, since this is likely to
occur in an experiment when auxiliary current drive
is added and energy confinement improves.

Computation of linear stability for modes outside
the core resonant set have been carried out for equi-
libria that correspond to the specific conditions used
in the non-linear simulations. In general, the equi-
libria with auxiliary drive tend to be unstable for
m = 0 modes and for some m = 1 modes with |n|
values larger than those in the core resonant set. For
these cases, the localized auxiliary drive sustains field
reversal just outside ra. This enhances dλ/dr at the
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and all m = 0 modes are resonant. The consequences
of driving modes resonant outside ra unstable are
discussed in the next section.
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4. Non-linear simulations

In this section we examine a series of non-linear
simulations where auxiliary current drive is applied
with various parameters. We compare the saturation
amplitudes of the fluctuations with those of a typ-
ical case without auxiliary current drive. The zero
beta conditions serve to isolate the current gradient
driven MHD activity from the complications of pres-
sure gradient driven activity and energy transport,
in addition to simplifying the simulations. The mer-
its of performing the linear calculations of the pre-
vious section are verified, as non-linear simulations
with greatly reduced fluctuation levels are found in
the region where the core resonant modes are stable.
However, the auxiliary drive increases the saturation
amplitude of them = 0 modes in some cases, and this
places further restrictions on the acceptable region of
parameter space.

The investigation is divided into three parts. First,
in Section 4.1, we compare two RFP simulations, one
with and one without auxiliary drive, where the for-
mer is selected to demonstrate a significantly reduced
magnetic fluctuation level. Second, in Section 4.2,
we compare four simulations with the auxiliary drive
applied at the same radius and with the same width,
but with varied magnitudes and axial electric fields.
This comparison demonstrates the ill effects of using
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Table 1. Input parameters and resulting current and magnetic fluctuation levels for non-linear simulations

Case ra σa Ea Ez Θ F RMS(b)a m = 0 energyb m > 0 energyb Auxiliary power (%)

A — — 0 3.8 1.58 −0.086 3.8× 10−2 1.2× 10−2 3.1× 10−2 —

B 0.8 0.1 1.0 2.1 1.44 −0.090 5.6× 10−3 6.5× 10−6 9.2× 10−4 17

C 0.8 0.1 2.8 3.8 1.76 −0.66 4.6× 10−2 6.0× 10−2 1.6× 10−3 24

Dc 0.8 0.1 2.8 3.0 1.64 −0.60 4.1× 10−2 5.0× 10−2 3.2× 10−6 31

E 0.8 0.1 2.8 2.1 1.51 −0.52 3.3× 10−2 3.2× 10−2 7.8× 10−4 43

F 0.65 0.1 2.8 3.8 1.90 −0.52 2.4× 10−2 1.4× 10−2 2.9× 10−3 25

G 0.65 0.1 1.5 3.4 1.71 −0.16 2.0× 10−2 4.0× 10−3 7.4× 10−3 17

H 0.8 0.2 1.2 3.0 1.67 −0.40 1.2× 10−2 4.4× 10−3 5.5× 10−8 21

I 0.8 0.2 0.75 2.1 1.46 −0.12 5× 10−7 4× 10−15 8× 10−12 19

a The quantity RMS(b) is defined as

q R
dx|b|2/

R
dx, where b excludes the (m = 0, n = 0) Fourier component, and the

bar indicates a temporal average.
b The magnetic fluctuation energy associated with a group of poloidal modes is

P
n

R
dxbm,nb

∗
m,n, where the summation

is over 1 ≤ n ≤ 42 for m = 0 and −42 ≤ n ≤ 42 for m > 0.
c The m > 0 fluctuations for case D are small and decaying over the time when these results are averaged.
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Figure 7. Comparison of magnetic energy spectra in

the m = 1 Fourier components for cases A and B in

Table 1. The magnetic energy in a Fourier component

is Em,n =
R
dxbm,n · b∗m,n, and the results are averaged

over 0.15τr .

parameters outside the stable region for the core
resonant modes, and it indicates how to avoid an
increase in the m = 0 activity. Third, in Section 4.3,
the auxiliary drive radius and width parameters are
discussed with respect to the linear and non-linear
activity of modes outside the core resonant group
examined in Section 3. These simulations show the
benefits of large ra and σa values.

4.1. Fluctuation reduction

An exemplary application of auxiliary drive is rep-
resented by case B in Table 1, which may be com-
pared with the typical RFP simulation, case A. The
auxiliary drive in B is applied at 80% of the wall
radius with a width of 10%, plausible parameters for
an RF current drive system [15]. The results show an
85% reduction in the RMS perturbed magnetic field
or equivalently a 98% reduction in the magnetic fluc-
tuation energy. These results are achieved through a
moderate value of Ea in combination with a signif-
icantly reduced value of Ez . The configuration has
nearly the same degree of reversal as case A, mea-
sured by the parameter F ≡ π〈Bz(r = 1)〉/Φ, and
only 10% less axial current, indicated by the pinch
parameter, Θ ≡ π〈Bθ(r = 1)〉/Φ. In the MHD power
balance, 17% of the total input power comes from
the auxiliary drive.

The auxiliary drive parameter set for case B is
near the tip of the stable region for the core res-
onant modes plotted in Fig. 4 for ra = 0.8. (The
resistivity profile and axial flux used in the linear
calculations match those of the non-linear simula-
tions.) This makes the normally dominant modes
linearly stable, and the non-linear fluctuation spec-
trum is dramatically altered. Figure 7 shows that the
auxiliary drive has essentially eliminated all m = 1
Fourier components with n > −10. There remains
a small amount of energy in these fluctuations due
to non-linear coupling from unstable modes. In this
case, the fluctuations are reduced enough to allow
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Figure 8. Poincaré surfaces of section for the θ = 0 plane for (a) case A

in Table 1 and (b) case B. The profile modification in case B leads to closed

magnetic flux surfaces in the core, whereas the original RFP has a stochastic

field everywhere. These Poincaré plots are generated from DEBS output with

the TUBE code written by A.A. Mirin and D.A. Martin.

the formation of closed flux surfaces out to r = 0.7
(Fig. 8).

Comparing the location of the current gradient
in the two cases, we observe that applying the aux-
iliary drive and reducing the axial field moves the
gradient outward (Figs 9(a, b)). While this is stabi-
lizing for m = 1 modes, it is destabilizing for m = 0
modes. The current profile from Eq. (8) with the
same parameters as in case B is linearly unstable for
the m = 0, 1 ≤ n ≤ 61 modes. In this case, the insta-
bility is weak, and the saturation amplitude of these
modes in the non-linear simulation (with ν = 1) is
smaller than it is in case A. Without auxiliary drive,
the m = 0 fluctuations are primarily sustained by
non-linear coupling with the robustly unstable core
resonant m = 1 modes [11]. Simulation B demon-
strates that when auxiliary drive is successful, the
reduced non-linear coupling into the m = 0 modes is
more important for the saturation amplitudes than
the linear destabilization.

Another observation from Fig. 9 is that the cur-
rent profile from case B is nearly identical to that
from Eq. (8) using the same parameters. The resid-
ual MHD activity is weak and therefore has little
quasi-linear feedback on the m = 0, n = 0 fields.
This contrasts with case A, where there is a large
discrepancy between the paramagnetic equilibrium
and the sustained RFP. In case B the auxiliary drive
maintains the reversed field against resistive diffu-
sion and effectively supplants the MHD dynamo.

In addition, a larger fraction of axial electric field
drives mean current in the core, as opposed to driving
fluctuations, so the axial current is nearly the same
as that in case A despite the large reduction of Ez.

4.2. Varying the magnitudes of Ez and Ea

Among simulations with the same auxiliary drive
radius and width but at different positions in the
Ea–Ez parameter space, we observe significantly dif-
ferent saturated fluctuation amplitudes. Cases B to
E in Table 1 have ra = 0.8 and σa = 0.1. Cases C
to E also have Ea = 2.8, but the different Ez values
place D within the stable region for the core reso-
nant modes in Fig. 4, with C above and E below. The
resulting m > 0 energy in all three of these simula-
tions is reduced from that of case A, and in case D it
is essentially eliminated. In case C the n = −7 mode
has the largest saturation amplitude of the m = 1
fluctuations, while the n = −10 mode is the largest
in case E. Consistent with the discussion in Section 3,
case C has Ez too large for all core resonant modes
to benefit from the auxiliary drive at ra = 0.8. In
contrast, the larger |n| modes in case E reside in the
vicinity of a distortion in λ created by the auxiliary
drive, which is relatively large for the small value of
Ez.

The drawback of the parameters used in cases C
to E is the resulting m = 0 activity, which is larger
than that in case A. For a given amount of axial flux,
Ea = 2.8 is excessive, and it creates a gross distortion
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Figure 9. Comparison of the time averaged parallel current from the non-

linear simulations indicated and the profiles represented by Eq. (8) with

the same parameters. Discrepancies result from MHD activity, which is not

considered in the derivation of profile (8).

of the λ profiles computed with Eq. (8). The gradi-
ents are destabilizing, and the resulting fluctuations
in the non-linear simulations are effective at remov-
ing most of the distortion, see Figs 9(c, d). A signifi-
cant fraction of the auxiliary power goes directly to
the fluctuations instead of to the mean current, and
since the m = 0 fluctuations are resonant near the
distortion, they receive much of this power. In case B
the distortion is much less pronounced (Fig. 9(b)), so
the m = 0 fluctuations are not strongly excited.

The conditions most beneficial for reducing mag-
netic saturation amplitudes are those near the tip
of the stable region of the linear calculations. These
conditions apply a minimal amount of auxiliary
drive, and hence a small current profile distortion
near the reversal surface, while stabilizing the inte-
rior modes. That the reversal parameter in case B is
similar to that in A is not a coincidence. The aux-
iliary drive and axial field are tuned to essentially
replace the MHD dynamo without driving extra
reversal.

4.3. Auxiliary drive radius and
width parameters

When the auxiliary drive is applied at different
radii, the fluctuation spectra reflect the proximity of
the different mode resonant surfaces to ra. Case F in
Table 1 has the same values of Ea and Ez as case C,
but ra = 0.65. Referring again to Fig. 4, the param-
eters for F place it slightly below the stable region
for the selected core resonant set. Its value of Ea
creates too much parallel current at ra, driving the
large |n| modes in the set unstable. The auxiliary
drive is, nonetheless, sufficient to reduce the m > 0
energy in the non-linear simulation by more than an
order of magnitude (like case C) from the standard
RFP case. An undesirable feature of applying the
auxiliary drive at small radii is the degree of m = 1
energy cascading to large |n| through m = 0 compo-
nents (Fig. 10(a)). Comparison with Fig. 7 indicates
that this always happens to some extent; it is an
important saturation mechanism in RFPs [10, 11].
However, the cascade is essentially driven by the
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parameters.

auxiliary current in case F, indicated by the discrep-
ancy between the resulting parallel current and the
solution to Eq. (8) shown in Fig. 10(b). The cascade
starts from fluctuations resonant in the distortion,
and since the conducting wall is further from the
distortion, the excited fluctuations tend to be more
unstable. This leaves a larger fraction of the radius,
and a much larger fraction of the plasma volume,
subject to stochastic magnetic field (Fig. 11).

The m = 0 fluctuation energy in case F is compa-
rable to that in case A, less than in cases C–E. Hav-
ing ra inside the reversal surface makes the m = 0
modes less susceptible to destabilization. Reducing
Ea and Ez to the parameters of case G in Table 1
places the configuration near the tip of the core res-
onant stable region in Fig. 4, and this reduces the
m = 0 activity. However, the m = 1 mode cascading
from n = −10 (beyond the range considered in the
stability diagrams) is enhanced over that in case F.
Since significantm = 1 activity seems unavoidable at

Figure 11. Poincaré surface of section for the θ = 0

plane for case F in Table 1. The auxiliary drive is applied

at a smaller radius than in case B, and a larger fraction

of the plasma volume remains subject to stochastic mag-

netic field.

small ra, applying the auxiliary drive at larger radii
is preferable.

Increasing the auxiliary drive width allows smaller
values of Ea for the same Ez, due to the tilt in the
core resonant stable region shown in Fig. 5. This
helps prevent an increase in the m = 0 activity when
the auxiliary drive is applied. Case H has ra = 0.8
and the same axial electric field as case D, but Ea is
reduced to centre its position in the stable region for
the larger auxiliary drive width, σa = 0.2, shown in
Fig. 5. This produces very little m > 0 activity, and
the m = 0 activity is less than that in case A. When
Ea and Ez are reduced to the conditions near the tip
of the stable region, as in case I, all magnetic fluc-
tuations are essentially eliminated in the non-linear
simulation.

The final observations concern the fraction of
input power required of the auxiliary current drive
system. The only simulations requiring less than 20%
auxiliary drive (cases B, G and I) are those near
the tips of the stable regions in Figs 4 and 5 for
the respective values of ra and σa. These configura-
tions represent the smallest possible ohmic drive, in
addition to the smallest possible auxiliary drive, for
achieving stable core resonant modes. Since ohmic
drive produces magnetic shear and a destabilizing
current gradient in the core, it follows that cases with
small ohmic drive are more easily improved. Further-
more, relaxing the auxiliary drive requirements leads
to less distortion of the profile, hence less excitation
of m = 0 modes and m = 1 modes resonant near
the reversal surface, avoiding the situation where
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auxiliary power drives fluctuations instead of mean
current. Thus, configurations near the tips of the sta-
ble regions for the core resonant modes also have the
lowest residual fluctuation levels.

5. Discussion and conclusions

The non-linear results of Section 4 demonstrate
that auxiliary current drive with a realistic distribu-
tion can significantly improve the RFP configuration.
The MHD dynamo is supplanted by the auxiliary
drive, and the axial electric field is reduced to pro-
duce a current profile which has a core like that of a
stable paramagnetic pinch. This suppresses the most
destructive magnetic fluctuations, leading to an inte-
rior of closed flux surfaces under the best conditions.
However, we have observed that the auxiliary drive
must be applied with care. Excessive auxiliary power
or current driven too far from the plasma edge sus-
tains fluctuations over a large fraction of the plasma
volume. Since auxiliary current drive (RF, DC helic-
ity injection, etc.) is likely to have lower efficiency
and greater complexity than ohmic power, it is fortu-
nate that the smallest fluctuation levels result when
the auxiliary power represents less than 20% of the
total input power in the MHD simulations.

Sustaining some degree of magnetic field rever-
sal is important to permit coupling between stable
and unstable m = 1 modes through resonant m = 0
fluctuations [11]; it provides an important satura-
tion mechanism and helps prevent disruptive excur-
sions. Simulations with low fluctuation levels show
that the reversal is sustained by the auxiliary drive.
This diminishes the self-organizing aspect of MHD
fluctuations in the final configuration, which is oth-
erwise considered an inherent part of the RFP. How-
ever, self-organization can still play an important
role. In practice, achieving a desired magnetic config-
uration quiescently through startup without encoun-
tering MHD activity will probably be difficult. The
normal dynamo activity can keep the discharge close
to the desired state as the auxiliary drive is applied
and tuned.

The smallest fluctuation amplitudes in our study
are produced with relatively broad auxiliary drive
profiles centred near the plasma edge. Reproducing
this in experiment may be difficult with a single cur-
rent drive system, due to the large magnetic shear
and plasma density gradient. Multiple systems may
be able to produce a broad current drive profile, or
even one of the completely stable configurations of
previous linear studies [35, 43]. However, our results

show that a narrow profile, which is realistic for a
single RF system [15, 16], can produce configurations
with greatly reduced fluctuation levels.

In general, the results presented here, as well as
previous experimental and computational results on
current profile control, are very encouraging for RFP
research. They suggest that the harmful transport
associated with magnetic fluctuations may be sup-
pressed. Determining what governs transport in a
configuration with reduced current density driven
fluctuations is an important topic for future research.
The next computational step is to investigate the
changes in energy confinement and the influence
of pressure gradient driven modes by including a
pressure evolution equation with anisotropic thermal
conduction in the non-linear simulations. The effects
of a temperature dependent resistivity profile may
then be modelled, providing more detailed informa-
tion regarding power requirements of the auxiliary
drive system. A complete simulation will also include
particle transport and a coupled auxiliary current
drive calculation.
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